В двигателе последовательного возбуждения, который иногда называют сериесным, обмотка возбуждения включена последовательно с обмоткой якоря (рис. 1). Для такого двигателя справедливо равенство I в =I a =I, следовательно, его магнитный поток Ф зависит от нагрузки Ф=f(I a). В этом главная особенность двигателя последовательного возбуждения и она определяет его свойства.

Рис. 1 — Схема электродвигателя последовательного возбуждения

Скоростная характеристика представляет зависимость n=f(I a) при U=U н. Она не может быть точно выражена аналитически во всем диапазоне изменения нагрузки от холостого хода до номинальной из-за отсутствия прямой пропорциональной зависимости между I a и Ф. Приняв допущение Ф=кI a , запишем аналитическую зависимость скоростной характеристики в виде

При увеличении тока нагрузки гиперболический характер скоростной характеристики нарушается и приближается к линейному, так как при насыщении магнитной цепи машины с увеличением тока I a магнитный поток остается практически постоянным (рис. 2). Крутизна характеристики зависит от величины?r.

Рис. 2 — Скоростные характеристики двигателя последовательного возбуждения

Таким образом, скорость сериесного двигателя резко изменяется с изменением нагрузки и такая характеристика называется «мягкой».

При малых нагрузках (до 0,25 I н) скорость двигателя после­довательного возбуждения может возрасти до опасных пределов (двигатель идет «вразнос»), поэтому работа таких двигателей на холостом ходу не допускается.

Моментная характеристика — это зависимость M=f(I a) при U=U н. Если предположить, что магнитная цепь не насыщена, то Ф=кI a и, следовательно, имеем

М=с м I a Ф=с м кI a 2

Это уравнение квадратичной параболы.

Кривая моментной характе­ристики изображена на рисунке 3.8. По мере увеличения тока I a магнитная система двигателя насыщается, и характеристика постепенно приближается к прямой.

Рис. 3 — Моментная характеристика двигателя последовательного возбуждения

Таким образом, электродвигатель последовательного возбуждения развивает момент, пропорциональный I a 2 , что и определяет главное его преимущество. Так как при пуске I a =(1,5..2)I н, то двигатель последовательного возбуждения развивает значительно больший пусковой момент по сравнению с двигателями параллельного возбуждения, поэтому он широко используется в условиях тяжелых пусков и при возможных перегрузках.

Механическая характеристика представляет собой зависимость n=f(M) при U=U н. Аналитическое выражение этой характеристики может быть получено только в частном случае, когда магнитная цепь машины ненасыщенна и поток Ф пропорционален току якоря I a . Тогда можно записать

Решая совместно уравнения, получаем

т.е. механическая характеристика двигателя последовательного возбуждения, также как и скоростная, имеет гиперболический характер (рис. 4).

Рис. 4 — Механические характеристики двигателя последовательного возбуждения

Характеристика КПД двигателя последовательного возбуждения имеет обычный для электродвигателей вид ().

В рассматриваемых двигателях постоянного тока обмотка возбуждения включается (рис.7.1) последовательно с обмоткой якоря, в результате чего ток возбуждения равен току якоря и создаваемый им поток будет

(7.1)

З
десь а – нелинейный коэффи-циент
; нелинейность этого коэффициента связана с формой кривой намагничивания и размагничивающим действием реак-ции якоря; оба этих фактора проявляются при больших токах
; при малых токах якоря коэффициент а можно считать величиной постоянной; при токах якоря
машина насыщается, и величина потока мало зависит от тока якоря. Соотношение 7.1 определяет свое-образие электромеханических характеристик двигателя постоян-ного тока последовательного возбуждения.

Для изменения направления вращения двигателя последова-тельного возбуждения недостаточ-но изменить полярность напряже-ния, подводимого к двигателю, т.к. при этом изменится одновременно и направление тока в обмотке якоря и полярность потока воз-буждения. Поэтому для реверси-рования двигателя нужно изменить направление тока в одной из частей машины, например в обмотке возбуждения, оставив направление тока в обмотке якоря неизменным, как это показано на схеме рис.7.2.

Подставив (7.1) в (6.2) и (6.3), получим основные соотношения для рассматриваемых двигателей.

(7.2)

(7.3)

Соответственно, выражение для электромеханической и механической характеристик двигателя последовательного возбуждения будут:

; (7.4)

В
первом приближении механическую характерис-тику двигателя постоянно-го тока последовательного возбуждения, если не учитывать насыщение магнит-ной цепи, можно предста-вить в виде гиперболы, не пересекающей ось орди-нат, а асимптотически при-ближающуюся к ней. Если положить (R Я + R в )=0, то характеристика (см. рис. 7.3) не будет пересекать и ось абсцисс. Такая характерис-тика называется «идеаль-ной»; выше нее характеристики быть не могут. Реальная естественная характеристика пересекает ось абсцисс в точке, соответствующей току короткого замыкания (момент М к ). Если учитывать насыщение двигателя, то при моментах меньших 0,8М к характеристика криволинейна и носит гиперболический характер; при больших значениях тока и момента поток вследствие насыщения становится постоянным и характеристика выпрямляется.

Характерной особенностью характеристик двигателя последовательного возбуждения является отсутствие точки идеального холостого хода. При уменьшении нагрузки скорость двигателя существенно возрастает, вследствие чего оставлять двигатель без нагрузки недопустимо.

Важным достоинством двигателей последовательного возбуждения является большая перегрузочная способность на низких скоростях. При перегрузке по току в 2,25-2,5 раза двигатель развивает момент 3,0-3,5 номинального. Это обстоятельство определило широкое использование двигателей последовательного возбуждения для электрических транспортных средств, где наибольшие моменты необходимы при трогании с места. Вторым важным достоинством двигателей последовательного возбуждения является отсутствие источника питания для цепи возбуждения двигателя.

Искусственные механические характеристики могут быть получены тремя способами: включением добавочного сопротивления в цепь якоря, изменением величины питающего напряжения и шунтированием обмотки якоря добавочным сопротивлением.

При введении добавочного сопротивления в цепь якоря жесткость механических характеристик уменьшается и уменьшается значение М к (см.рис.7.4). Этот способ регулирования используется при пуске двигателя, когда ступени сопротивления перемыкаются пусковыми контакторами. На рис.7.4. показаны пусковые характеристики, соответствующие двухступенчатой схеме пуска. Длительная работа на реостатных характеристиках сопряжена со значительными потерями энергии в сопротивлениях.


Наиболее экономичным способом регулирования скорости двигателя последовательного возбуждения является изменение величины подводимого к двигателю напряжения. Механические характеристики, соответствующие этому способу регулирования, показаны на рис.7.5. По мере уменьшения напряжения они смещаются вниз от естественной характеристики. Внешне искусственные характеристики при регулировании изменением напряжения схожи с реостатными характеристиками, однако, есть существенная разница в этих способах регулирования. Реостатное регулирование сопряжено с потерей энергии в добавочных сопротивлениях, а при регулировании изменением напряжения дополнительные потери отсутствуют.

Д
вигатели последо-вательного возбуждения часто получают питание от сети постоянного тока или источника постоянного то-ка с нерегулируемой вели-чиной напряжения. Регули-рование напряжения на за-жимах двигателя в этом случае целесообразно про-изводить способом широт-но-импульсного регулирования, который был рассмотрен в §6.3. Упрощенная схема регулируемого электропривода с двигателем постоянного тока последовательного возбуждения и широтно-импульсным регулятором напряжения показана на рис.7.6.

Изменение потока возбуждения в рассматриваемых двигателях возможно, если зашунтировать обмотку якоря сопротивлением (см.рис.7.7а). В этом случае ток возбуждения будет равен

,

т.е. содержит постоянную составляющую, не зависящую от нагрузки двигателя. При этом двигатель приобретает свойства двигателя смешанного возбуждения: независимого и последовательного. Благодаря независимому возбуждению механические характеристики приобретают большую жесткость и пересекают ось ординат. Примерные механические характеристики для этого способа регулирования показаны на рис.7.7б. Шунтирование якоря позволяет получить устойчивую пониженную скорость при отсутствии нагрузки на валу двигателя. В данной схеме возможен переход двигателя в режим рекуперативного торможения при скорости
или
. Существенным недостатком рассматриваемого способа регулирования является его неэкономичность, обусловленная большими потерями энергии в шунтирующем сопротивлении.

Д
ля двигателей последовательного возбуждения характерны два режима торможения: противовключением и динамический. В режиме противовключения необходимо включение добавочного сопротивления в цепь яко-ря двигателя. На рис.7.8 показаны механические характеристики для двух вариантов режима противовключения. Характерис-тика 1 получается, если при работе двигателя в на-правлении «вперед» (точ-ка «в») изменить направление тока в обмотке возбуждения и одновре-менно ввести в цепь двигателя добавочное сопро-тивление. При этом дви-гатель переходит в режим противовключения в точке «а» с тормозным моментом М торм , под действием которого будет происходить торможение двигателя.

Второй случай режима противовключения возникает в режиме «протягивающего груза», когда в грузоподъемных механизмах производится спуск груза, а для подтормаживания спускаемого груза двигатель включается в направлении его подъема. При этом благодаря тому, что в цепь двигателя включено большое добавочное сопротивление (которому соответствует характеристика 2), двигатель под действием момента, создаваемого грузом, вращается в обратном направлении и будет работать в точке «б», в которой активный статический момент М груза уравновешивается тормозным моментом двигателя, работающего в режиме противовключения. Режим противовключения сопряжен со значительными потерями энергии в цепи двигателя и добавочного сопротивления.

Режим динамического торможения для двигателей последовательного возбуждения возможен в двух вариантах. В первом – якорь двигателя замыкается на сопротивление, а обмотка возбуждения питается от сети через добавочное сопротивление. Характеристики двигателя в этом режиме подобны характеристикам двигателя независимого возбуждения в режиме динамического торможения.

В

о втором варианте, схема ко-торого показана на рис.7.9, дви-гатель работает как генератор с самовозбуждением. Особенность данной схемы состоит в том, что необходимо при переходе из дви-гательного режима в режим дина-мического торможения сохранить направление тока в обмотке возбуждения во избежание размагничивания машины. При размыкании контактора КМ ток в обмотке возбуждения становится равным нулю, но, так как магнитопровод машины был намагничен, то сохраняется остаточный поток возбуждения, благодаря которому в обмотке якоря вращающегося двигателя наводится э.д.с., под действием которой при замыкании контактов КВ в цепи: обмотка якоря – обмотка возбуждения – сопротивление R протекает ток, и машина самовозбуждается. Этот процесс происходит, если скорость двигателя будет больше граничной скорости
. Механические характеристики в режиме динамического торможения с самовозбуждением показаны на рис.7.10.

Режим рекуперативного торможения в обычной схеме включения двигателя последовательного возбуждения невозможен. Для его осуществления необходимо шунтирование якоря двигателя, либо применение отдельной дополнительной обмотки независимого возбуждения.

Схема двигателя постоянного тока последовательного возбуждения изображена на рисунке 6-15. Обмотка возбуждения двигателя включена последовательно с якорем, поэтому магнитный поток двигателя изменяется вместе с изменени-. ем нагрузки. Так как ток нагрузки велик, то обмотка возбуждения имеет небольшое число витков, это позволяет несколько упростить конструкцию пускового

реостата по сравнению с реостатом для двигателя параллельного возбуждения.

Скоростную характеристику (рис. 6-16) можно получить на основании уравнения скорости, которая для двигателя последовательного возбуждения имеет вид:

где - сопротивление обмотки возбуждения.

Из рассмотрения характеристики видно, что скорость двигателя сильно зависит от нагрузки. При увеличении нагрузки увеличивается падение напряжения на сопротивлении обмоток при одновременном увеличении магнитного потока, что приводит к значительному уменьшению скорости вращения. Это характерная особенность двигателя последовательного возбуждения. Значительное уменьшение нагрузки приведет к опасному для двигателя увеличению скорости вращения. При нагрузках менее 25% номинальной (и особенно на холостом ходу), когда ток нагрузки и магнитный поток из-за небольшого числа витков в обмотке возбуждения оказывается настолько слабым, что скорость вращения быстро возрастает до недопустимо больших значений (двигатель может «разнести»). По этой причине эти двигатели применяют лишь в тех случаях, когда их соединяют с приводимыми во вращение механизмами непосредственно или через зубчатую передачу. Применение ременной передачи недопустимо, так как ремень может оборваться либо соскочить, двигатель при этом полностью разгрузится.

Регулирование скорости вращения двигателя последовательного возбуждения может осуществляться изменением магнитного потока или изменением питающего напряжения.

Зависимость вращающего момента от тока нагрузки (механическую характеристику) двигателя последовательного возбуждения можно получить, если в формуле вращающего момента (6.13) магнитный поток выразить через ток нагрузки. В отсутствие магнитного насыщения поток пропорционален току возбуждения, а последний для данного двигателя является током нагрузки, т. е.

На графике (см. рис. 6-16) эта характеристика имеет форму параболы. Квадратичная зависимость вращающего момента от тока нагрузки является второй характерной особенностью двигателя последовательного возбуждения, благодаря которой эти двигатели легко переносят большие кратковременные перегрузки и развивают большой пусковой момент.

Рабочие характеристики двигателя приведены на рисунке 6-17.

Из рассмотрения всех характеристик следует, что двигатели последовательного возбуждения можно применять в тех случаях,

когда необходим большой пусковой момент или кратковременные перегрузки; исключена возможность их полной разгрузки. Они оказались незаменимыми как тяговые двигатели на электротранспорте (электровоз, метрополитен, трамвай, троллейбус), в подъемнотранспортных установках (краны и т. д.) и для пуска двигателей внутреннего сгорания (стартеры) в автомобилях и авиации.

Экономичное регулирование скорости вращения в широких пределах осуществляется в случае одновременной работы нескольких двигателей путем различных комбинаций включения двигателей и реостатов. Например, на малых скоростях они включаются последовательно, а на больших - параллельно. Необходимые переключения осуществляются оператором (водителем) поворотом ручки переключателя.


Характерной особенностью ДПТ с ПВ является то, что его обмотка возбуждения (ПОВ) с сопротивлением посредством щеточно-коллекторного узла последовательно соединена с обмоткой якоря с сопротивлением, т.е. в таких двигателях возможно только электромагнитное возбуждение.

Принципиальная электрическая схема включения ДПТ с ПВ представлена на рис.3.1.

Рис. 3.1.

Для осуществления пуска ДПТ с ПВ последовательно с его обмотками включается добавочный реостат.

Уравнения электромеханической характеристики ДПТ с ПВ

Ввиду того, что в ДПТ с ПВ ток обмотки возбуждения равен току в обмотке якоря, в таких двигателях в отличие от ДПТ с НВ проявляются интересные особенности.

Поток возбуждения ДПТ с ПВ связан с током якоря (он же является и током возбуждения) зависимостью, называемой кривой намагничивания, представленной на рис. 3.2.

Как видно зависимость для малых токов близка к линейной, а с увеличением тока проявляется нелинейность, связанная с насыщением магнитной системы ДПТ с ПВ. Уравнение электромеханической характеристики ДПТ с ПВ так же и для ДПТ с независимым возбуждением имеет вид:

Рис. 3.2.

Из-за отсутствия точного математического описания кривой намагничивания, при упрощенном анализе можно пренебречь насыщением магнитной системы ДПТ с ПВ, т. е. принять зависимость между потоком и током якоря линейной, как это показано на рис. 3.2 пунктирной линией. В этом случае можно записать:

где - коэффициент пропорциональности.

Для момента ДПТ с ПВ с учетом (3.17) можно записать:

Из выражения (3.3) видно, что в отличие от ДПТ с НВ у ДПТ с ПВ электромагнитный момент зависит от тока якоря не линейно, а квадратично.

Для тока якоря можно в этом случае записать:

Если подставить выражение (3.4) в общее уравнение электромеханической характеристики (3.1), то можно получить уравнение для механической характеристики ДПТ с ПВ:

Отсюда следует, что при ненасыщенной магнитной системе механическая характеристика ДПТ с ПВ изображается (рис. 3.3) кривой, для которой ось ординат является асимптотой.

Рис. 3.3.

Значительное увеличение скорости вращения двигателя в области малых нагрузок обуславливается соответствующим снижением величины магнитного потока.

Уравнение (3.5) является оценочным, т.к. получено при допущении о ненасыщенности магнитной системы двигателя. На практике по экономическим соображениям электродвигатели рассчитываются с определенным коэффициентом насыщения и рабочие точки лежат в районе колена перегиба кривой намагничивания.

В целом, анализируя уравнение механической характеристики (3.5), можно сделать интегральный вывод о «мягкости» механической характеристики, проявляющейся в резком уменьшении скорости при увеличении момента на валу двигателя.

Если рассматривать механическую характеристику, изображенную на рис. 3.3 в области малых нагрузок на валу, то можно сделать вывод, что понятие скорости идеального холостого хода для ДПТ с ПВ отсутствует, т. е. при полном сбросе момента сопротивления двигатель идет в «разнос». При этом его скорость теоретически стремится к бесконечности.

С увеличением нагрузки скорость вращения падает и равняется нулю при значении момента короткого замыкания (пускового):

Как видно из (3.21) у ДПТ с ПВ пусковой момент при отсутствии насыщения пропорционален квадрату тока короткого замыкания- При конкретных расчетах пользоваться оценочным уравнением механической характеристики (3.5) нельзя. В этом случае построение характеристик приходится вести графо-аналитическими способами. Как правило, построение искусственных характеристик производится на основании данных каталогов, где приводятся естественные характеристики: и.

Реальный ДПТ с ПВ

В реальном ДПТ с ПВ вследствие насыщения магнитной системы но мере увеличения нагрузки на валу (а, следовательно, и тока якоря) в области больших моментов, наблюдается прямая пропорциональность между моментом и током, поэтому механическая характеристика становится там практически линейной. Это относится как к естественной, так и к искусственным механическим характеристикам.

Кроме того, в реальном ДПТ с ПВ даже в режиме идеального холостого хода существует остаточный магнитный поток, вследствие чего скорость идеального холостого хода будет иметь конечную величину и определяться выражением:

Но так как величина незначительна, то может достигать значительных величин. Поэтому у ДПТ с ПВ, как правило, запрещается сбрасывать нагрузку на валу более чем на 80% отноминальной.

Исключением являются микродвигатели, у которых и при полном сбросе нагрузки остаточный момент трения достаточно велик для того, чтобы ограничить скорость холостого хода. Склонность ДПТ с ПВ идти в «разнос» ведет к тому, что их роторы выполняются механически усиленными.

Сравнение пусковых свойств двигателей с ПВ и НВ

Как следует из теории электрических машин, двигатели рассчитываются на конкретный номинальный ток. При этом ток короткого замыкания не должен превышать значения

где - коэффициент перегрузки по току, который обычно лежит в диапазоне от 2 до 5.

В случае, если имеются два двигателя постоянного тока: один с независимым возбуждением, а второй с последовательным возбуждением, рассчитанные на одинаковый ток, то допустимый ток короткого замыкания у них также будет одинаковым, в то время как пусковой момент у ДПТ с НВ будет пропорционален току якоря в первой степени:

а у идеализированного ДПТ с ПВ согласно выражению (3.6) квадрату тока якоря;

Из этого следует, что при одинаковой перегрузочной способности пусковой момент ДПТ с ПВ превосходит пусковой момент ДПТ с НВ.

Ограничение величины

При прямом пуске двигателя ударные значения тока, поэтому обмотки двигателя могут быстро перегреться и выйти из строя, кроме того большие токи негативно влияют и на надежность щеточно-коллекторного узла.

(Оказанное обуславливает необходимость ограничения до какой-либо приемлемой величины либо введением в якорную цепь дополнительного сопротивления, либо уменьшением питающего напряжения.

Величина максимально допустимого тока определяется коэффициентом перегрузки.

Для микродвигателей обычно осуществляется прямой пуск без добавочные сопротивлений, но с ростом габаритов ДПТ необходимо производить реостатный пуск. особенно, если привод с ДПТ с ПВ используется в нагруженных режимах с частыми пусками и торможениями.

Способы регулирования угловой скорости вращения ДПТ с ПВ

Как следует из уравнения электромеханической характеристики (3.1) угловую скорость вращения можно регулировать, как и у ДПТ с НВ, изменением, и.

Регулирование скорости вращения изменением питающего напряжения

Как следует из выражения механической характеристики (3.1) при изменении питающего напряжения можно получить семейство механические характеристик, изображенных на рис. 3.4. При этом величина напряжения питания регулируется, как правило, при помощи тиристорных преобразователей напряжения или систем «Генератор-двигатель».

Рис 3.4. Семейство механических характеристик ДПТ с ПВ при различных значениях напряжения питания якорной цепи < < .

Диапазон регулирования скорости разомкнутых систем не превышает 4:1, но при введении обратных связей он может быть на несколько порядков выше. Регулирование угловой скорости вращения в этом случае осуществляется вниз от основной (основной скоростью называется скорость, соответствующая естественной механической характеристике). Достоинством способа является высокий КПД.

Регулирование угловой скорости вращения ДПТ с ПВ введением последовательного добавочного сопротивления в цепь якоря

Как следует из выражения (3.1) последовательное введение добавочного сопротивления изменяет жесткость механических характеристик и также обеспечивает регулирование угловой скорости вращение идеального холостого хода.

Семейство механических характеристик ДПТ с ПВ для различных значений добавочного сопротивления (рис. 3.1) представлено на рис. 3.5.

Рис. 3.5 Семейство механических характеристик ДПТ с ПВ при различных значениях последовательного добавочного сопротивления < < .

Регулирование осуществляется вниз от основной скорости.

Диапазон регулирования при этом обычно не превышает 2,5:1 и зависит от нагрузки. Регулирование при этом целесообразно проводить при постоянном моменте сопротивления.

Достоинством данного способа регулирования является его простота, а недостатком большие потери энергии на добавочном сопротивлении.

Этот способ регулирования нашел широкое применение в крановых и тяговых электроприводах.

Регулирование угловой скорости вращения

изменением потока возбуждения

Так как у ДПТ с ПВ обмотка якоря двигателя последовательно связана с обмоткой возбуждения, то для изменения величины потока возбуждения необходимо зашунтировать обмотку возбуждения реостатом (рис. 3.6), изменения положения которого влияет на ток возбуждения. Ток возбуждения в этом случае определяется как разность между током якоря и током в шунтирующем сопротивлении. Так в предельных случаях при? и при.

Рис. 3.6.

Регулирование осуществляется в этом случае вверх от основной угловой скорости вращения, вследствие уменьшения величины магнитного потока. Семейство механических характеристик ДПТ с ПВ для различных значений шунтирующего реостата представлено на рис. 3.7.

Рис. 3.7. Механические характеристики ДПВ с ПВ при различных значениях шунтирующего сопротивления

С уменьшением величины возрастает. Данный способ регулирования является достаточно экономичным, т.к. величина сопротивления последовательной обмотки возбуждения мала и, соответственно, величина также выбирается малой.

Потери энергии в этом случае примерно такие же, как у ДПТ с НВ при регулировании угловой скорости изменением потока возбуждения. Диапазон регулирования при этом, как правило, не превышает 2:1 при постоянной нагрузке.

Способ находит применение в электроприводах требующих ускорения при малых нагрузках, например, в безмаховиковых ножницах блюмингов.

Все перечисленные выше способы регулирования характеризуются отсутствием конечной угловой скорости вращения идеального холостого хода, но необходимо знать, что существуют схемотехнические решения, позволяющие получать конечные значения.

Для этого шунтируются реостатами обе обмотки двигателя или только обмотка якоря. Эти способы неэкономичны в энергетическом отношении, но позволяют достаточно кратковременно получать характеристики повышенной жесткости с малыми конечными скоростями идеального холостого хода. Диапазон регулирования при этом не превышает 3:1, а регулирование скорости осуществляется вниз от основной. При переходе в генераторный режим в этом случае ДПТ с ПВ не отдает энергию в сеть, а работает генератором замкнутым на сопротивление.

Необходимо отметить, что в автоматизированных электроприводах величина сопротивления регулируется, как правило, импульсным методом периодическим шунтированием полупроводниковым вентилем сопротивлений или с определенной скважностью.

В ЭП грузоподъемных машин, электрического транспорта и ряда других рабочих машин и механизмов применение находят двигатели постоянного тока последовательного возбуждения. Основной особенностью этих двигателей является включение обмотки 2 возбуждения последовательно с обмоткой / якоря (рис. 4.37, а), вследствие чего ток якоря одновременно является и током возбуждения.

Согласно уравнениям (4.1) - (4.3) электромеханическая и механическая характеристики двигателя выражаются формулами:

в которых отмечена зависимость магнитного потока от тока якоря (возбуждения) Ф(/), a R = Л я + R OB + /? д.

Магнитный поток и ток связаны между собой кривой намагничивания (линия 5 рис. 4.37, а). Кривую намагничивания можно описать с помощью какого-либо приближенного аналитического выражения, что позволит в этом случае получить формулы для характеристик двигателя.

В простейшем случае кривую намагничивания представляют прямой линией 4. Такая линейная аппроксимация, по существу, означает пренебрежение насыщением магнитной системы двигателя и позволяет выразить зависимость потока от тока следующим образом:

где а = tgcp (см. рис. 4.37, б).

При принятой линейной аппроксимации момент, как это следует из (4.3), является квадратичной функцией тока

Подстановка (4.77) в (4.76) приводит к следующему выражению для электромеханической характеристики двигателя:

Если теперь в (4.79) с помощью выражения (4.78) выразить ток через момент, то получится следующее выражение для механической характеристики:

Для изображения характеристик со (У) и со (М) проведем анализ полученных формул (4.79) и (4.80).

Найдем вначале асимптоты этих характеристик, для чего устремим ток и момент к двум их предельным значениям - нулю и бесконечности. При / -> 0 и Л/-> 0 скорость, как это следует из (4.79) и (4.80), принимает бесконечно большое значение, т.е. со -> Это

означает, что ось скорости является первой искомой асимптотой характеристик.


Рис. 4.37. Схема включения (а) и характеристики (б) двигателя постоянного тока последовательного возбуждения:

7 - якорь;2 - обмотка возбуждения; 3 - резистор; 4,5 - кривые намагничивания

При / -> °о и М -> сю скорость со -» -R/ka, т.е. прямая с ординатой со а = -R/(ka ) является второй, горизонтальной асимптотой характеристик.

Зависимости со(7) и со(М) в соответствии с (4.79) и (4.80) имеют при этом гиперболический характер, что позволяет с учетом сделанного анализа представить их в виде кривых, показанных на рис. 4.38.

Особенность полученных характеристик состоит в том, что при небольших токах и моментах скорость двигателя принимает большие значения, при этом характеристики не пересекают ось скорости. Таким образом, для двигателя последовательного возбуждения в основной схеме включения рис. 4.37, а не существуют режимы холостого хода и генераторного хода параллельно с сетью (рекуперативного торможения), так как нет участков характеристик во втором квадранте.

С физической стороны это объясняется тем, что при /-> 0 и М -> 0 магнитный поток Ф -» 0 и скорость в соответствии с (4.7) резко возрастает. Отметим, что из-за наличия в двигателе потока остаточного намагничивания Ф ост практически скорость холостого хода существует и равна со 0 = U/ (/сФ ост).

Остальные режимы работы двигателя аналогичны режимам работы двигателя с независимым возбуждением. Двигательный режим имеет место при 0

Полученные выражения (4.79) и (4.80) могут быть использованы для приближенных инженерных расчетов, поскольку двигатели могут работать и в области насыщения магнитной системы. Для точных практических расчетов используются так называемые универсальные характеристики двигателя, приведенные на рис. 4.39. Они представ-


Рис. 4.38.

возбуждения:

о - электромеханическая; б - механическая

Рис. 4.39. Универсальные характеристики двигателя постоянного тока последовательного возбуждения:

7 - зависимости скорости от тока; 2 - зависимости момента оттока

ляют собой зависимости относительной скорости со* = со / со ном (кривые 1) и момента М* = М / М (кривая 2) от относительного тока /* = / / / . Для получения характеристик с большей точностью зависимость со*(/*) представлена двумя кривыми: для двигателей до 10 кВт и выше. Рассмотрим использование этих характеристик на конкретном примере.

Задача 4.18*. Рассчитать и построить естественные характеристики двигателя с последовательным возбуждением типа Д31, имеющего следующие данные Р нш = 8 кВт; п иш = 800 об/мин; U = 220 В; / ном = 46,5 А; Л„ ом = °,78.

1. Определяем номинальные скорость со и момент М ном:

2. Задавая вначале относительные значения тока /*, по универсальным характеристикам двигателя (рис. 4.39) находим относительные значения момента М* и скорости со*. Затем, умножая полученные относительные величины переменных на их номинальные значения, получаем точки для построения искомых характеристик двигателя (см. табл. 4.1).

Таблица 4.1

Расчет характеристик двигателя

Переменная

Численные значения

а > =(й * ю ном-рад/ с

М = М*М Н ом, И м

По полученным данным строим естественные характеристики двигателя: электромеханическую со(/) - кривая 1 и механическую со(М) - кривая 3 на рис. 4.40, а, б.


Рис. 4.40.

а - электромеханические: 7 - естественная; 2 - реостатная; б - механическая: 3 - естественная